A Convincing Argument (but not a proof) as to why the Fundamental Theorem of Caluclus should be true

Peyam Ryan Tabrizian

Friday, November 12th, 2010

1 The Fundamental Theorem of calculus

The FTC has two parts, the most important one saying that if f is a differentiable function on $[a, b]$, then it is integrable on $[a, b]$ and:

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

You might have heard it in the form $\int_{a}^{b} f(x) d x=F(b)-F(a)$, which is essentially the same, but we will use the above form to give a convincing argument why the FTC should be true. Again, it's just a convincing argument, as by no means a proof! It is meant to convince you that the FTC makes sense!

2 Convincing Argument

We will not bother about issues of integrability of f^{\prime}, because it's very technical and has lots of epsilons involved. Instead, we will show intuitively why the above formula holds.

For this means, we will use the left-hand-sums L_{n} and will let $n \rightarrow \infty$ (once we know that a function is integrable, we can calculate its integral in any way we'd like!). Now by definition of the left-hand-sums applied to f^{\prime}, we get:

$$
L_{n}=\frac{b-a}{n} \sum_{i=0}^{n-1} f^{\prime}\left(x_{i}\right)
$$

Note: If you don't like a and b, assume $b=1$ and $a=0$. The argument is exactly the same, but there are fewer constants!

But now, by definition, for each i,

$$
f^{\prime}\left(x_{i}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{i}+h\right)-f\left(x_{i}\right)}{h}
$$

Now, since we know that the limit exists, we can say that for h small, the above equality approximately holds, i.e.

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i}+h\right)-f\left(x_{i}\right)}{h}
$$

In particular, it should hold for $h=\frac{b-a}{n}$ when n is large (again, this is not a proof, and one would need to be rigorous about it). So $\frac{1}{h}=\frac{n}{b-a}$, so we get:

$$
f^{\prime}\left(x_{i}\right) \approx \frac{n}{b-a}\left(f\left(x_{i}+\frac{b-a}{n}\right)-f\left(x_{i}\right)\right)
$$

However, by definition, $x_{i}+\frac{b-a}{n}=x_{i+1}$, so we get:

$$
f^{\prime}\left(x_{i}\right) \approx \frac{n}{b-a}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)
$$

A picture might help you understanding the situation:

> 1A/FTC.png

Finally, we get:

$$
\begin{aligned}
L_{n} & =\frac{b-a}{n} \sum_{i=0}^{n-1} f^{\prime}\left(x_{i}\right) \\
& \approx \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{n}{b-a}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) \\
& =\left(\frac{b-a}{n}\right)\left(\frac{n}{b-a}\right) \sum_{i=0}^{n-1}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) \\
& =\sum_{i=0}^{n-1}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) \\
& =f\left(x_{1}\right)-f\left(x_{0}\right)+f\left(x_{2}\right)-f\left(x_{1}\right)+f\left(x_{3}\right)-f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)-f\left(x_{n-2}\right)+f\left(x_{n}\right)-f\left(x_{n-1}\right)
\end{aligned}
$$

But now notice that all the terms cancel out except $f\left(x_{0}\right)=f(a)$ and $f\left(x_{n}\right)=f(b)$! (this is called a telescoping sum, and you'll see more of those in Math 1B).

So we get:

$$
L_{n}=f\left(x_{n}\right)-f\left(x_{0}\right)=f(b)-f(a)
$$

But $f(b)-f(a)$ does not depend on n, and so $\lim _{n \rightarrow \infty} L_{n}=f(b)-f(a)$

$$
\int_{a}^{b} f^{\prime}(x) d x=\lim _{n \rightarrow \infty} L_{n}=f(b)-f(a)
$$

And we're done! :)

